

UCLA Breakdown & HG Research Updates HG2022

Gerard Lawler¹, Atsushi Fukusawa¹, Zenghai Li², Nathan Majernik¹, Andrea Mostacci³, Brian Naranjo¹, Jake Parsons¹, Bruno Spataro³, Arathi Suraj¹, Sami Tantawi², Yusuke Sakai¹, Oliver Williams¹, and James Rosenzweig¹ ¹ UCLA, Los Angeles, CA 90095 ² SLAC, Menlo Park, CA, 94025 ³ LNF-INFN, Frascati, Italy

- 1. Background
- 2. Facilities overview
- 3. Experiment & Simulation
 - a) LLRF
 - b) High power C-band
 - c) CYBORG Beamline
 - d) UCXFEL photoinjector development
- 4. Conclusions

1) Background

- Significant focus photoinjector; wakefield; fundamental high field physics
- TopGun previous development in Sband
- Based on normal conducting cryogenic gradient improvements which we can

Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources JB Rosenzweig, et al. - Physical Review Accelerators and Beams, 2019

- Ultra-compact xray free electron laser (UCXFEL) concept, 40 m
- Multiple sections dependent on cryogenic operation
- Photoinjector and associated cryostat most relevant for now
- Cool Copper Collider (C³) linac section (below)

2) MOTHRA Lab

- Multi-Option Testing of High-field Radiofrequency Accelerators (MOTHRA)
- Suitable for cryogenics testing; C-band infrastructure development; low energy (single MeV) beamline for cathode studies

2) MOTHRA Lab

2) MOTHRA Lab

•

2) SAMURAI Lab

- Samurai lab & bunker space
- Operational with S-band hybrid photoinjector
- Suitable for high energy high gradient linac development (10s-100s MeV); UCXFEL demonstrators; C-band high gradient photoinjector research

C-band Klystron

Low Emittance 1.6 Cell C-band Gun R&D S-band Hybrid Gun

30 MeV Lina

25MeV Dipole

and Klystron

stron

S-band SLAC Linac, 80MeV or High Gradient C-band Linac, 100MeV

- Small test cryostat initial cryocooler commissioning; material property studies; and LLRF tests
- Small envelope, vacuum good enough for multi layer insulation

• Copper pillbox cavities used for Cband low level LLRF

	Coupling	Q0
COMEB machining + brazing	0.58	12200
GZero machining + Scarrot brazing	0.55	7300
Simulation	0.5	12322

- Resurrected Thales C-band klystron to single MW power sufficient for 1st cryogenic beamline (right)
- Mini-modulator for C-band under construction (below)
- C-band SLED development in collaboration with Tantawi group at SLAC

3b) High Power Structure Collaboration

- Create test bed for hosting multiple different experiments into various structures and material alloys
 - Brazeless joint testing, copper-silver and more exotic alloys perhaps w/ Mo etc.
- Logic of cryogenics, assembly, and general diagnostics for actual experiments
- Example here using 2 cell distributed-coupling in Cband (to right)

e-field (f=5.712) [1] 4 Component Abs Frequency 5.712 GHz Phase 90 ° Cross section A Cutplane at X 0.000 mm Maximum (Plane) 13414.7 V/m Maximum 13414.7 V/m

- Low energy beamline using CrYogenic Brightness-Optimized Radiofrequency Gun (CYBORG)
- Under construction in MOTHRA bunker
- Collaboration with NSF Center for Bright Beams
- Multi-phase setup + commissioning

- 1. Cavity structure test
- 2. Infrastructure development
- 3. Low temperature emission/photocathode test bed

J. K. Bae, I. Bazarov, P. Musumeci, S. Karkare, H. Padmore, and J. Maxson, J. Appl. Phys. 124, 244903 (2018).

3c) Phase 1 Config 1

- Config 1 goals:
 - -SHI vibration isolation
 - -Waveguide setup
 - $-\mathsf{UHV}$
 - –CYBORG cooldown & temperature stability
 - -LL and high power RF tests
 - Optimize RF pulse heating + cooling

- Config 2 goals:
 - -Cryogenic copper photoemission
 - -Cryogenic QE
 - -Low precision MTE measurement

- load lock and phase 2 diagnostics
- Test of back plane plug into reentrant small C-band cavity
- Cooling test with large additional heat leaks
- Completion condition: load lock plug QE measurement down to cryo temps

3d) UCXFEL Photoinjector Concept

- 1.6 cell cavity w/ reentrant design
- Cryogenic solenoid in cryost
- Consideration of beam dynamics based on high spatial harmonic content
- introduction of strong second order focusing effects

- repetition rate of 100 Hz
- nominal 300 nsec RF pulses
- operating temperature of 27 K
- RF dissipation of 11 W, requiring over 0.5 kW cooling power
- Maximize shunt impedance and consequently efficiency

RR Robles et al. *Physical Review Accelerators and Beams* 24 (6), 063401

- 1. High gradient and breakdown research at UCLA multifaceted and located at multiple facilities
- 2. Focus on cryogenics surface physics and Cband RF development
- 3. Highly collaborative with bright beams research